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Directed bond percolation on a square lattice: I. 
Analytical results 
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DPhG/SRM, CEN Saclay, 91 191 Gif-sur-Yvette, Cedex, France 

Received 7 November 1983 

Abstract. A rigorous mathematical formulation of directed percolation is given in terms 
of matrix recursion equations. The Domany-Kinzel limit is rederived in a very simple 
way. Expansion around this limit yields surprisingly good results for the percolation 
probabilities already to first order. 

1. Introduction 

The problem of directed percolation has gained'considerable attention recently. It has 
been shown that Reggeon field theory (Cardy and Sugar 1980), selected problems of 
epidemiology (Bailey 1975), astronomy (Schulman and Seiden 1982) and chemistry 
(Schogl 1972) are related to directed percolation. There are many problems, for 
example in the paint and oil industry, which are treated by using ideas similar to those 
of directed percolation. According to Obukhov ( 1980) the upper critical dimensionality 
for oriented percolation is d = 5 and thus it does not belong to the same universality 
class as non-oriented percolation (for which the corresponding d is 6) .  In d = 2 Monte 
Carlo calculations (Kertesz and Vicsek 1980), the method of finite size renormalisation 
group ( Domany and Kinzell981, Kinzel and Yeomans 1981), series expansions (Blease 
1977, Adler et a1 1981) were used to determine the critical properties in the general 
case. For some special cases exact analytical results have been obtained (Domany and 
Kinzel 1981, Wu and Stanley 1982). Unlike for the problem of directed animals 
(Nadal et a1 1982), there are no analytical results for directed percolation in the general 
case. 

The aim of the present work is to give a new, mathematically precise formulation 
of directed percolation, which will then be applied to derive analytical results beyond 
the existing ones. Since the method can be used straightforwardly for very effective 
and fast numerical calculations, in a subsequent paper (Bidaux and Forgics 1984) we 
will present numerical results for dire :ted percolation obtained through this method. 

In 0 2 directed percolation on a square lattice will be formulated in terms of matrix 
recursion equations which are exact. In § 3 we derive the so-called Domany-Kinzel 
limit (Domany and Kinzel 1981). Section 4 contains results of an expansion around 
this limit, while § 5 is devoted to some concluding remarks. Some details of the 
calculation are described in the appendix. 

t On leave from the Central Research Institute for Physics, H 1525, Budapest, Hungary. 
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2. Rigorous mathematical formulation 

In what follows we concentrate on a square lattice and imagine 'water' (current, disease, 
etc) flowing from a source only in the direction of arrows in figure 1. Adjacent lattice 
sites are either connected through pipes (bonds) with probabilities p1 and p2 depending 
on the direction of flow, or are not connected with probabilities q1 = 1 -pl and 
q2 = 1 - p 2 .  If water can reach a given lattice site we say it is wet and denote it by +, 
otherwise it is dry and is denoted by -. The questions one may ask are the following. 
(1) What is the probability that the observer will find water at the nth level, irrespective 
of the sites where the flow appears? ( 2 )  What is the probability that the observer will 
find water at a given site of the nth level? (3)  What are the respective limits of the 
previous probabilities when n goes to infinity and what are the corresponding critical 
conditions on p1 and p 2  for these limits to  be non-zero? 

Figure 1. Directed percolation on a square lattice. Arrows indicate the permitted oriented 
paths for the flow to propagate. Each oriented bond is conducting with probability p ,  in 
the NE-SW direction, p z  in the NW+SE direction. The number of sites at each row 
(level) is used in the text as an index of that row (level). The + sign at the top site indicates 
that this site is wet. 

Inspecting the situation ('dry' or 'wet') of each of the lattice sites at the nth level, 
we obtain 2" distinct possible states for this level, which will be classified as follows. 

Each state is represented by a sequence of + or - signs of length n, and the kth 
sign of the sequence (from left to right) represents the situation of the kth site (from 
left to right in figure 1) for this given state. 

The probabilities of the 2" different states of the nth level are displayed in a vertical 
array U, of 2" lines in the way shown explicitly for n = 1, 2 ,  3: 

Pr( - +) 

Note the general rule for constructing U,: the successive probabilities met as U, is read 
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from top to bottom refer to states which are classified according to an increasing value 
of their binary equivalent (( - )  = 0 ,  (+) = 1). 

In what follows, we will omit Pr when writing the components of the vectors U,, 
and each component will be called configuration as a short name for configuration 
probability. 

Knowing the configurations in the nth row, one can construct the configurations 
of the ( n  + 1)th row using a 'transfer matrix', whose entries are expressed by pl(ql) 
and p 2 ( q 2 ) .  For example in the case n = 1 

where u1 = [J = [ y ]  accounts for the wet site of the firstFow. The sum of the elements 
of GI in a given column is unity, which means that M1 is a Markov matrix. This is 
of course true for any fin since directed percolation is a Markovian process. As can 
be seen from ( 2 )  the 'transfer matrix' is a rectangular matrix. It is more convenient 
to work with square matrices and in order to achieve this we use the following trick. 
We complete figure 1, as shown in figure 2. Now if we have ( n  + 1 )  lattice sites at the 
first level 

where u1 and u,+~ describe the configurations of the first and ( n  + 1)th level respectively, 
and M,,+l is a 2("+1)X2("+1) square matrix connecting the configurations of two 
subsequent levels. If now we choose u1 such that all its components are zero except 
for the one corresponding to ( + - - -. . . -), which has weight one, then our 'square' 
problem will be equivalent to the original one. In other words 

u1=[;] 

where 

are 2" component vectors. 

Figure 2. Lattice equivalent to the previous one, using the same convention for oriented 
bonds. Signs at the top of the first row indicate that the only wet site of that row is at the 
extreme left. This lattice has been used to derive recursion relations in terms of square 
matrices. 
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With the choice ( 4 a )  the additional lattice sites introduced in figure 2 will always be 
dry and therefore will not participate in the flow. The first component of U, (which 
is denoted by u n 1 )  gives the probability that there is no water at the nth level. The 
percolation threshold is then defined as 

O i f P Z ~ f ( P I ) ,  
some strictly positive probabilistic value if p2 > f( pl).  

lim(1- u n l )  = 
n-m 

Here p2 =f( pl) determines the critical line along which percolation takes place in the 
anisotropic case. 

It is now not very difficult to show (using induction) that there exists a recursion 
equation connecting M,+l with M,, namely 

where 

In (5a, b ) ,  M,  and X,, are Markovian matrices and the recursion equations preserve 
this property. The initial values of M, and X, are 2 X 2 matrices which can be obtained 
by constructing M2 explicitly and then writing it in the form ( 5 a ) :  

Equations (5a, b )  with (6a, b )  give a mathematically exact formulation of directed 
percolation on a square lattice. We have not yet been able to resolve these equations. 
In what follows a special case and then an expansion around this special case will be 
discussed. 

3. The Domany-Kinzel limit 

The Domany-Kinzel limit corresponds to p1 = 1 (ql =O) .  In this case the problem 
essentially reduces to a one-dimensional random walk and can be solved exactly 
(Domany and Kinzel 1981, Wu and Stanley 1982). We now show how this limit can 
be treated by using the formalism described in § 2. If p1 = 1, equations (5a, b )  reduce 
to 

Here p2 = p,  q2 = q have been used. The fact that M becomes block diagonal and X 
becomes block triangular renders the problem almost trivial. Let us calculate (M,+l)"ul 
according to (2), where u1 is a 2'"+"-component vector with the structure given by 
( 4 a ,  b) .  Using ( 7 a )  
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In order to calculate (Xk)kl we again use ( 7 a )  and ( 7 b ) .  By induction one easily finds 
that 

(9) 

l o  otherwise. 

(:)qn-'pS then gives the probability that up to (and including) the (s + 1)th site (counted 
from the left) all the lattice sites at the ( n + l ) t h  level are wet, whereas the ones to 
the right of this site are all dry (note that because of the special limit we are considering, 
if a given site at the nth level is wet, all the sites left of it are wet). If by Piob(p) we 
denote the probability that site (s+ 1) at the ( n  + 1)th level is wet, irrespective of the 
others, then 

From (9) one sees that the non-zero components of u , , + ~  form a binomial distribution 
and (10) means summing part of this distribution. We are interested in the large-n 
limit, such that s / n  = a is finite. In this limit the binomial distribution around its mean 
(maximum) value np can be approximated by a Gaussian distribution. Since these 
distributions are normalised to unity we immediately obtain 

0 if a > p ,  

1 i fa<p.  
n-ot  

This determines the critical probability (Wu and Stanley 1982) pbo' for the Domany- 
Kinzel case as 

pI.0) = a. (12) 

pLo' depends on the position of the site in the last level at which flow is observed. 
Assuming ( a  - p )  << 1, for large n one obtains 

P A P )  - e-"'[ (13) 

6 -  ( a  -PI-* (14) 

with 

which then gives v = 2 for the critical index of the correlation length. 

4. Expansion around the Domany-Kinzel limit 

The results of § 3 have already been previously obtained (although in a more compli- 
cated way) by other authors (Domany and Kinzel 1981, Wu and Stanley 1982), using 
a different approach. The simplicity of the present formulation allows one also to 
perform an expansion around the Domany-Kinzel limit without too much difficulty. 
Let us write p1 = 1 - E and treat E as a small parameter. Writing 

M,( E )  = Mn + Em,,, Xn(E)=Xn+EXn, ( 1 5 ~  b )  
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using (5a, b)  one gets 

qxn 1. (16a,b) m,,+l = 
X n + 1  = [;:: -qXn+xn 

Here again p 2  = p ,  q2 = q. Calculating u,+~ according to (2), using (5a, b )  and (16a, b )  
up to first order in E ,  

Once the components of u,+~ are known, the quantity Pn,,( p )  defined in § 3 can again 
be calculated by summing the appropriate elements of u n t l .  Some details of the 
evaluation of sums in (17) and d the calculation of Pn,,( p )  are given in the appendix. 
Let us write 

p n , s (  P) = pL:!( P) + EPL!~ t P) + O( E ' ) .  (18) 

Here PL:j( p )  is given by (10). Let us evaluate (18) at p = P , ( E )  =pro'+ ~ p : ' ) ,  where 
p:') is determined by (12). Using (11) we obtain 

The derivative of P!,,: is easily evaluated from (10): 

(0 )  n-1 n 
dP s-1 n > > l  na(1-a)  

According to (A8) the leading term in PL!d(a) is also proportional to n"'. This means 
p:') must be chosen such that the n"* contributions cancel in P,,, This leads to 

(21) 
In the isotropic case ( p1 = p z )  it is plausible that percolation occurs first for a = s/ n = f 
(that is, at the central site of the last level). To obtain the approximate value of the 
percolation probability in this case, we can use PI-''( a = i) and E = 1 - p1 = 4. This leads 
to (Grassberger 1983) 

- P n , s ( p ) J p = a = s l n  = n ( ) aS-l(l -a )" - s  - ( ) " ' + O ( i ) .  (20) 

p p  = (1 - a y .  

p,(isotropic) = ; + ; E  =0.625. ( 2 3 )  
(23) compares rather well with the numerical estimates (Kertesz and Vicsek 1980, 
Kinzel and Yeomans 1981, Adler e? al 1981). Finally, using the 0(1) term in (A8) 
we get 

Pn,s ( p , )  = 5 - E [  ( 1 - a )/ a][$ - 5( 1 - 2a)l .  (24) 
In the isotropic case the exact solution should give Pn,,( p,) = O .  We can estimate 
pc (isotropic) again. This time, using a = f, we find the value of E for which Pn, , (pC)  = 0. 
This leads to 

( 2 5 )  o='-' 
2 2.5 
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and finally E = 1 - pc = i, which gives 

p,(isotropic) = 3 = 0.667. (26) 

(26) again compares surprisingly well with numerical estimates. 
It is interesting to note that the mean of (23) and (26) gives 0.646 for pc which is 

almost the same as the best numerical estimates (Blease 1977, Dhar and Barma 1981, 
Kinzel and Yeomans 1981, Dhar 1982). 

5. Conclusions 

The method described in the present work gives a systematic expansion of critical 
probabilities for directed percolation on any lattice. The calculation of higher-order 
terms in E is straightforward, though it becomes rather tedious. It is not inconceivable 
that equations (5a,  b )  can be solved exactly. Similar equations are valid in higher 
dimensions. We hope to solve the completely anisotropic case in d = 3 (free flow in 
a plane). It is quite possible that the method can be used for other problems. 
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Appendix 

The RHS of (17) is evaluated by using the recursion equations for M,, and X,. A 
straightforward calculation gives 

Cq' 
if s = 0, 

n-1-k l + k - 1  
if 1 6  s S n - I ,  -1  - i1( s -k  )( k ) q n - s p s  

(;) 4"-sPs  if n - 1 + 1 6 s~ n. 

The components with i different from the above LHS form are zero. The sum on 
the RHS of ( A l )  can be easily evaluated by using 

where the generating function of the K f :  kcdefined by 

30 c K:xm=(l-x)-". 
m =O 
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n 

( ~ n ) " - ' ( x n ) ' l I i = 1 + 2 " - ' ~ 2 ~ - ~ ~  = 
1=1 

In terms of Kf: 

1-4" 4- if s=O, 
1-4  

(A61 
n + l  

s( + l )  4 Y S  if l s s s n .  

One can immediately see that the RHS of (A4) is related to the coefficient of the x s  
term in the power series of (1 - ~ ) - ( " - l - ~ + ' )  . Finally 

As = ( :) - ( ; 

The sum in (A7) in the large-n limit can be evaluated using Stirling's formula and the 
saddle point method. One gets 
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